2つの標本の仮設検定の例題対応のない2組の平均値の差の検定(母分散が既知)例題ある製品の製造工程で、ある1週間に製造された製品200個の重さの平均は530g、標準偏差は6gであった。次の1週間に製造された製品180個の重さの平均は529g、標準偏差は5gであった。これらの結果から、それぞれの週に作られた製品の重さの平均に差はあるか? 考え方「ある1週間」と「次の1週間」について、それぞれの製品の個数や重さの平均と標準偏差についてまとめると、次の表のようになる。なお、標本標準偏差の二乗が母分散と同じだと見なすことにする。
それぞれの週に製造された製品の重さの平均に差があるかどうか調べたいので、 帰無仮説と対立仮説は、次のようになる。
上の表にまとめた情報から、
検定統計量 ![]() この検定統計量を両側検定で判定すると、
有意水準 なお、有意水準 対応のない2組の平均値の差の検定(母分散が未知だが等しい)例題2つの銘柄のたばこのニコチン含有量について調べた結果、銘柄Aの10本については平均27.0mg、標準偏差1.7mgであった。また、銘柄Bの7本については平均29.3mg、標準偏差1.9mgであった。この2つの銘柄の間でニコチンの含有量に差はあるか? 考え方「銘柄A」のたばこと「銘柄B」について、それぞれの本数やニコチン含有量の平均と標準偏差についてまとめると、次の表のようになる。
まず、母分散が等しいかどうかを調べるため、等分散の検定をする。 F分布にしたがう、等分散の検定の検定統計量は、次のようになる。 ![]() この値を、第1自由度が 「銘柄A」のたばこと「銘柄B」について、ニコチン含有量の平均に差があるかどうか調べたいので、 帰無仮説と対立仮説は、次のようになる。
検定統計量を求めるため、まず、
全体の分散(母分散 ![]() したがって、検定統計量 ![]() この検定統計量を両側検定で判定する。
有意水準 なお、有意水準 対応のない2組の平均値の差の検定(母分散が未知で等しくない)例題女子大生に、デートに臨むときのハイヒールの高さを聞いたところ、自分を「おしゃれ」と答えた24人のハイヒールの高さの平均は3.67cm、標準偏差は1.79cmであった。また、自分を「普通」と答えた48人のハイヒールの高さの平均は2.77cm、標準偏差は1.29cmであった。「おしゃれ」と答えた人たちと「普通」と答えた人たちとでハイヒールの高さに差はあるか? 考え方自分を「おしゃれ」と答えた女子大生と自分を「普通」と答えた女子大生のハイヒールの高さについて、答えた人数やハイヒールの高さの平均と標準偏差についてまとめると、次の表のようになる。
まず、母分散が等しいかどうかを調べるため、等分散の検定をする。 F分布にしたがう、等分散の検定の検定統計量は、次のようになる。 ![]() この値を、第1自由度が t分布にしたがう検定統計量 ![]() 次に、検定のための自由度を求める。 ![]() 整数分だけを自由度として採用すると、 この検定統計量を両側検定で判定する。
有意水準 なお、有意水準 対応のある2組の平均値の差の検定例題街頭で180人の人に「体重を教えてください」と声をかけたときに、答えた体重と本当の体重の差にについて、その差の平均は1.676kg、差の標準偏差は10.218kgであった。このとき、街頭で声をかけられて答えた体重と本当の体重に差はあるか? 考え方街頭で声をかけて答えた体重と本当の体重について、答えた人数や体重の平均と差の標準偏差についてまとめると、次の表のようになる。
街頭で声をかけて答えた体重と本当の体重について差があるかどうか調べたいので、 帰無仮説と対立仮説は、次のようになる。
差の平均は、次のように、対応するデータ同士の差を求めて、 その合計を標本数で割ったものになる。
t分布にしたがう検定統計量 ![]() この検定統計量を両側検定で判定する。
有意水準 なお、有意水準 比率の差の検定例題男性有権者の中から1,200人、女性有権者の中から900人を選んで、内閣の支持者の数を調べた結果、それぞれ432人と276人であった。男性と女性間で支持率に差があるといえるか? 考え方男女それぞれ有権者について、それぞれの人数や支持者の数についてまとめると、次の表のようになる。
男女それぞれ有権者について、内閣支持率に差があるかどうか調べたいので、 帰無仮説と対立仮説は、次のようになる。
まず、母比率の推定値 ![]() したがって、検定統計量 ![]() この検定統計量を両側検定で判定すると、
有意水準 なお、有意水準 |