TITLE:点推定と区間推定
*点推定と区間推定 [#d8c14b64]
**点推定 [#sb975a8e]
***点推定とは [#ve6b3370]
-標本から母集団の特性値を推定する
--母数(パラメータ):母集団の特性値(統計量)
---母平均(母集団の平均)、母分散(母集団の分散)、母比率(母集団の比率)
---直接調べることはできない
--推定量:標本をもとに母数として推定した統計量
---標本平均(標本の平均)、不偏分散(標本の分散)、標本比率(標本の比率)
---推定値:推定量から求めた具体的な値
-点推定では、標本の推定値が必ずしも母数と一致するとは限らない(たいてい誤差が生じる)
***推定量の望ましい性質 [#df4f149a]
-不偏性
--その期待値(平均値)が母数と一致する推定量を「不偏推定量」という
---標本平均について、その期待値は母平均に一致する(中心極限定理へ)
-一致性
--標本数を大きくしていくと推定値が母数に近づく推定量を「一致推定量」という
---[[大数の法則>../../5th/Probability#pb33d92d]]から明らか(統計的確率は数学的確率に近づく)
-有効性
--ある母数に対して2つ以上の推定量がある場合に分散(誤差)の小さい推定量を「有効推定量」という
---標本の中央値に比べ、標本平均の方が、分布の分散が小さい
**区間推定 [#j7fd34d0]
***区間推定とは [#qb2eb5eb]
-「ある」確からしさで、母集団の特性値の範囲を示す
***信頼区間と信頼係数 [#jb48769d]
-信頼区間
--「ある」確からしさで示される、母集団の特性値の範囲
---95%信頼区間 : 標本から平均値を出したとき、母平均(母集団の平均)がその区間にあるのが100回中95回以上の確率で、間違える危険性が5回未満
---99%信頼区間 : 標本から平均値を出したとき、母平均(母集団の平均)がその区間にあるのが100回中99回以上の確率で、間違える危険性が1回未満
---注意:「母平均の値が95(または99)%の確率でその区間のどこかにある」と解釈してはいけない
--信頼限界:信頼区間の上限および下限の値
-信頼係数
--区間推定の確実性をあらわし、「1-α」(αは0.05または0.01)であらわす
--信頼度 : 100×(1-α) %
**中心極限定理 [#ba4d428f]
-平均が &mimetex(\normalsize \mu ); 、分散が &mimetex(\normalsize \sigma^2 ); の母集団から大きさ &mimetex(\normalsize n ); の標本を抽出して、その標本平均 &mimetex(\normalsize \bar{x} ); を調べると、その分布は平均が &mimetex(\normalsize \mu ); 、分散が &mimetex(\normalsize \frac{\sigma^2}{n} ); の正規分布に従う(&mimetex(\normalsize n ); は十分大きな数とする)
--つまり、「標本平均の平均(期待値)は、母集団の平均に一致する」
--また、「母集団の分布に関係なく、標本平均の平均は正規分布にしたがう」
--母集団が正規分布にしたがうなら、標本の大きさにかかわらず、中心極限定理が成り立つ
--参考URL:http://www.kwansei.ac.jp/hs/z90010/sugakuc/toukei/tyuusin2/chuusin.htm
|