度数分布表

度数分布表とは

度数分布表 (frequency table) とは、データを大きさの順に並び変えいくつか区分にまとめた表で、データ全体の分布 (distribution) を把握するために用います。

度数分布表の作成手順

- 1. 階級数または階級幅を決める
- 2. 階級値および有効桁数を考え、階級の境界(どこで区切るか)を決める
- 3. 各階級の度数を数える
- 4. 階級と度数を元に、度数分布表を作成し、必要に応じて分布の形を見たりする

階級	階級値	度数	累積度数	相対度数	累積相対度数
90~99	94.5	2	2	1.0	1.0
100~109	104.5	6	8	3.0	4.0
110~119	114.5	16	24	8.0	12.0
120~129	124.5	22	46	11.0	23.0
130~139	134.5	24	70	12.0	35.0
140~149	144.5	30	100	15.0	50.0
150~159	154.5	44	144	22.0	72.0
160~169	164.5	26	170	13.0	85.0
170~179	174.5	15	185	7.5	92.5
180~189	184.5	11	196	5.5	98.0
190~199	194.5	2	198	1.0	99.0
200~209	204.5	1	199	0.5	99.5
210~219	214.5	1	200	0.5	100.0
dž		200		100.0	

用語

- 階級 (class)
 - データを区切るときの区間
 - 各階級でとりうる最大の値を上限、最小の値を下限という
- 階級数
 - ∘ いくつの区間に区切るかの区間の数
 - ○一般には10前後が目安(多すぎても少なすぎてもいけない)
 - どのように区切るかは、キリのいい値や経験などを元にする場合があるが、客観的な区切り方を検討する場合はスタージスの方法(後述)を用いる
- 階級幅 (class interval)
 - ○データをいくつ刻みに区切るかの区切る値の幅
- 階級値 (class mark)
 - ○各階級の中央の値

階級値 = { (階級の上限) + (階級の下限) } / 2

- 度数 (frequency)
 - 各階級に含まれるデータの数
- 累積度数 (cumulative frequency)
 - ○階級値の小さい(または大きい)ほうから、ある階級までの度数を合計した値
 - ○最後の階級での値は度数の合計
- 相対度数 (relative frequency)
 - 度数の合計に対する各階級の度数の比(全体を1=100%または100とする)

相対度数 = (その階級の度数)/(全体の度数)×100(%)

- 累積相対度数 (relative cumulative frequency)
 - ○階級値の小さい(または大きい)ほうから、ある階級までの相対度数を合計した値
 - つまり、ある階級までの度数の合計が全体の何%かを示す
 - 最後の階級での値は100%または100

累積相対度数 = (各階級の累積度数)/(全体の度数)×100(%)

階級数の算出

階級数を算出するときに、経験やキリのいい数字ではなく、何らかの客観的な理由が必要となる場合に、使用される方法がいくつかある。

- スタージス (Starges) の方法
 - データの数が n 個のとき、常用対数 log10 を用いて算出

$$1 + (3.322)\log_{10} n = 1 + \frac{\log_{10} n}{\log_{10} 2}$$

- シャリエ (Charier) の方法:標準偏差の1/3
- フィッシャー (Fisher) の方法:標準偏差の1/4

Excelで度数分布表を作成

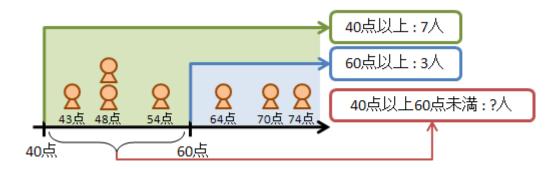
表計算ソフトの「Microsoft Excel」を使って、度数分布表を作成する場合、関数を使わなくても、四則演算(+ -*/)だけでも作成できます。

しかし、データ数が多い場合に度数を求めたり、度数などの合計を求めるときには、関数を使えばデータを処理しやすくなります。

度数分布表の作成で使用する関数

• 合計は、SUM関数を利用します。

SUM(合計を計算する)


- 書式: SUM(数值1, 数值2, ...)
- ○引数:数値1,数値2,...:平均を計算するセルの範囲
- 。例:B1~B10セルまでのセルの数値の平均値を計算する

=SUM(B1:B10)

●「値が60以上のセル」のように、特定の条件を満たすセルの個数を数えるには、COUNTIF関数を使います。

COUNTIF(指定された範囲のセルのうち、検索条件に一致するセルの個数を返す) ○ 書式: COUNTIF(範囲、検索条件) ○ 引数: 範囲: 個数を求めるセルの範囲 ○ 引数: 検索条件: 個数を求めるセルの検索条件 ○ 例:W1~W10セルまでで値が「80以上」のセルの個数を数える =COUNTIF(W1:W10, ">=80")

COUNTIF関数を利用して数式をつくるとと、「40以上60未満の値があるセルの数」を求めることができます。ただし、COUNTIF 関数には条件は1つしか設定できないため、ひとつの数式でCOUNTIF 関数を2つ使います。

たとえば、C1~C7セルに上の図のように点数の値が入力されているとします。そのときに、「40以上60未満の値があるセルの数」を求める場合は、次のような数式になります

```
=COUNTIF(C1:C7,">=40")-COUNTIF(C1:C7,">=60")
```

つまり、「40以上の値があるセルの数」と「60以上の値があるセルの数」の差を求めればよいわけです。