母平均の検定

母平均の検定では、「**母平均と標本平均との差の程度**」を調べる。

- 帰無仮説 Hロは「母平均と標本平均が等しい」: μ= 〒
- 対立仮説 H1 は「母平均と標本平均が等しくない」:
 - 。両側検定の場合は μ+π
 - ○片側検定の場合は μ < \bar{x} または μ > \bar{x}

母分散が既知の場合(z検定)

- 母分散 σ^2 を使う(めったにないことだが...)
- 母平均を Д、標本平均を 団、標本の大きさを n とする
- ・標準正規分布にしたがう、検定統計量 ²0 を次の式から算出する

$$z_0 = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

- 検定統計量 ²⁰ と、有意水準 Q の有意点の値(標準正規分布表などから求める)を使って、判定をする
 - ○片側検定
 - ■帰無仮説 H 0 を棄却: |z 0|≥z(α)
 - ■帰無仮説 H 0 を採択: |z₀|<z(α)
 - ○両側検定
 - ■帰無仮説 H₀ を棄却: |z₀|≥z(α/2)
 - ■帰無仮説 Hο を採択: |z₀|<z(α/2)

母分散が未知の場合(1標本t検定)

• 母分散 σ^2 の代わりに、不偏分散 s^2 を使う

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})$$

- 母平均を μ 、標本平均を x、標本の大きさを n とする
- 自由度 df = n-1 のt分布にしたがう、検定統計量 t O を次の式から算出する

$$t_0 = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$$

- 検定統計量 t O と、自由度 df=n-1 、有意水準 α の有意点の値(t分布表などから求める)を使って、判定をする
 - 片側検定
 - ■帰無仮説 好 0 を棄却: |t 0| ≥ t(a)
 - ■帰無仮説 Hロ を採択:|tロ|<t(a)
 - ○両側検定
 - ■帰無仮説 H_{0 を棄却:|t₀|≥t(α/2)}
 - ■帰無仮説 Hロ を採択: |to|<t(α/2)