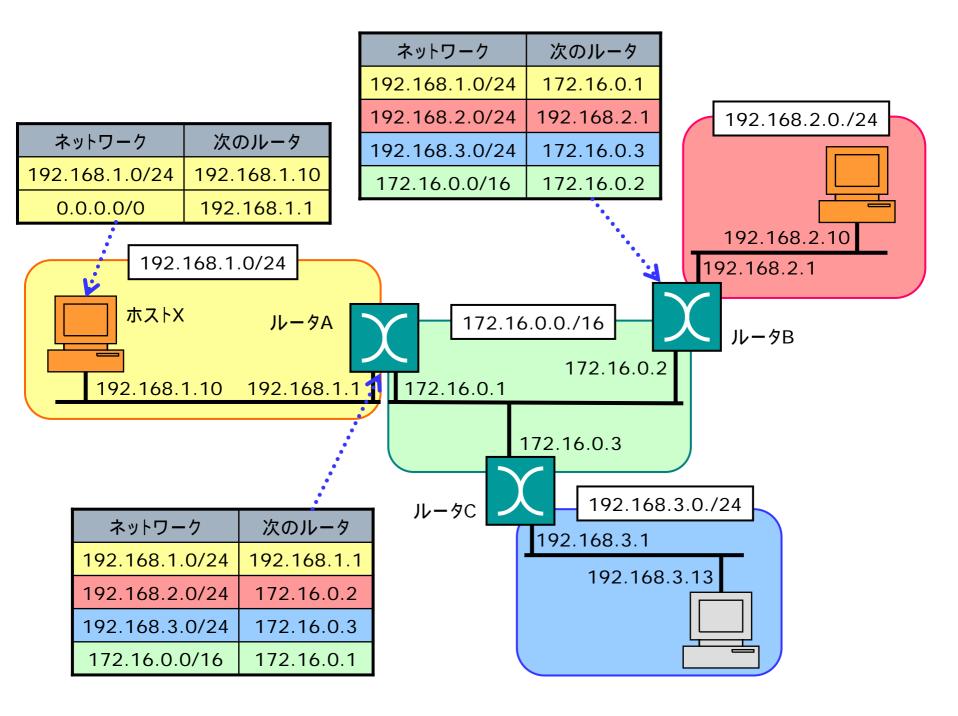
情報ネットワーク

(明石高専 電気情報工学科 5年)

第6回 2004年11月30日(火)

前回の復習


- IPは「ネットワーク間の相互通信」
 - end-to-endの通信を実現
 - 3つの役割
 - IPアドレス、経路制御、データリンクの抽象化
- IPアドレス
 - ネットワークとホストを示す(32ビット)
 - A~Cのクラスフル、クラスレス(CIDR)による運用
 - そのほかのアドレス
 - ネットワークアドレス、ブロードキャストアドレス、 サブネットマスク、プライベートIPアドレス

今回の内容

- 第4章 IPプロトコル (p.128~154)
 - 4.4 経路制御(ルーティング)
 - 4.5 IPの分割処理と再構築処理
 - 4.6 ARP(Address Resolution Protocol)
 - 4.7 ICMP(Internet Control Message Protocol)
 - 4.8 IPマルチキャスト
 - 4.9 IPヘッダ

経路制御(ルーティング)

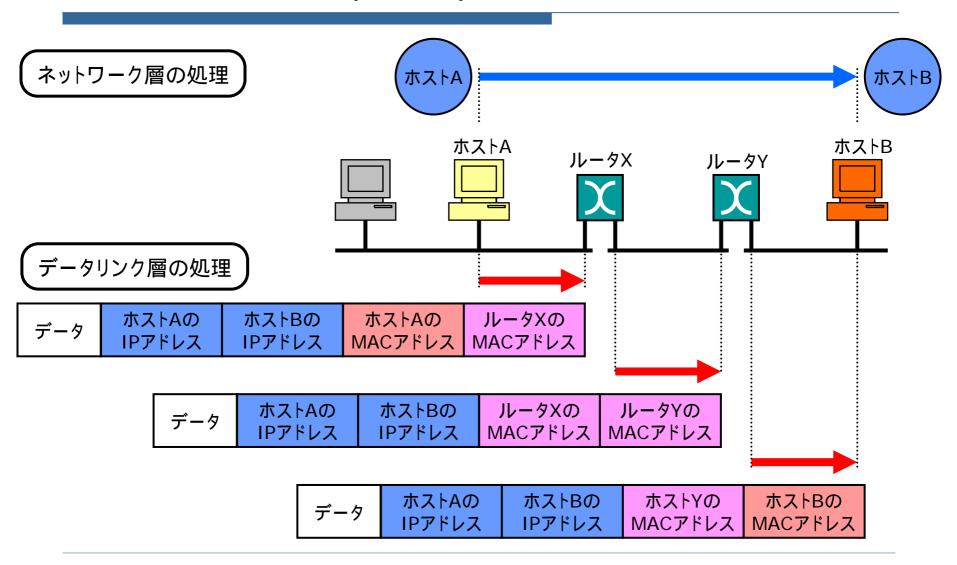
- 経路(Route)
 - パケットを配送する流れ
 - 経路制御表(ルーティングテーブル)で決定
- 経路制御表の作り方
 - ダイナミックルーティング(dynamic routing)
 - ルータが動的に作成
 - スタティックルーティング(static routing)
 - 管理者が事前に設定
- 経路制御表の内容
 - 宛先のネットワークアドレス
 - そのネットワークへのパケットを配送するルータ

そのほかの経路制御

- デフォルトルート (Default Route)
 - ― 経路が指定されていないパケットの送信先
 - "0.0.0.0/0"
 - デフォルトゲートウェイ
 - デフォルトルートに指定されたルータ
- ホストルート (Host Route)
 - IPアドレスそのもので経路制御
 - "IPアドレス/32" (すべてのビットを使う)
- ループバックアドレス (Loopback Address)
 - 一 同じコンピュータ内のプログラム間の通信に利用
 - "127.0.0.1" (localhost)

IPの分割処理と再構築処理

- IPはデータリンクの「差異」を抽象化
 - データリンク毎にMTU(最大転送単位)が違う
 - Ethernet: 1500オクテット
 - IP: 65535~68オクテット
- IPデータグラムの分割と再構築
 - MTUが異なる場合にどうするか?
 - パケットを分割
 - 番号とフラグをつける(始まり・中間・終わり)
 - 終点ホストでパケットを再構築
 - ルータの負担を減らすため


経路MTU検索 (Path MTU Discovery)

- 分割の欠点
 - ルータの処理が重くなる
 - 転送効率が悪くなる
 - 分割したパケットが失われると手間がかかる
- 分割が必要でない最大のMTUで送信
 - 経路MTU (PMTU: Path MTU)
 - ■「分割禁止」のIPパケットを送信
 - 途中のルータが「到達不能」+「MTU」を返信
 - 通知されたMTU値で分割 (最大10分間)
 - TCPではMSS(最大セグメント長)で送信

ARP: Address Resolution Protocol

- アドレス解決のためのプロトコル
 - データリンクを利用した通信のため
 - IPアドレスからMACアドレスを調べる
- ARPのしくみ
 - ブロードキャストでARP要求
 - 該当するホストがARP応答
 - 取得したMACアドレスを記憶(キャッシュ:一時記憶)
 - ARPテーブル: IPアドレスとMACアドレスの対応表
 - (2回目以降)ARPテーブルからMACアドレスを取得
- arpコマンド
 - "arp -a"でキャッシュされた情報を表示

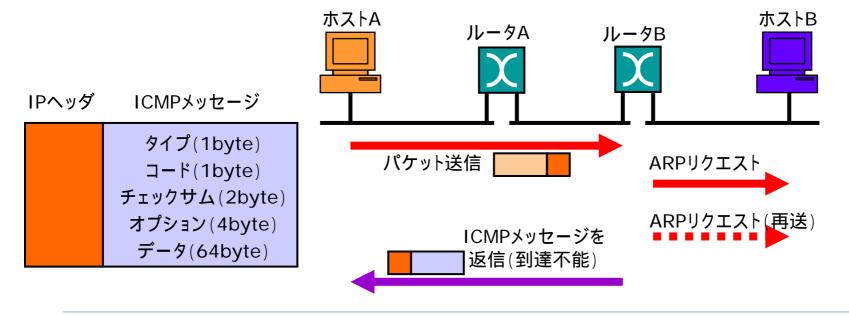
ARPの必要性(図解)

ARP (つづき)

■ ARPの必要性

- MACアドレス: データリンク(同一の通信媒体)で利用
 - パケットを中継するホストごとのアドレスが必要
- IPアドレス: IP(通信の経路)で利用
 - パケットの送信元と宛先のアドレスだけが必要

RARP


- MACアドレスからIPアドレスを調べる
- RARPサーバが必要(ARPテーブル設定済み)

Proxy ARP

- 他のホスト宛てのARP要求にこたえる
- サブネットマスクが利用できない場合(ダイヤルアップ接続)

ICMP: Internet Control Message Protocol

- IPネットワークの制御・管理のプロトコル
 - IPを使って送信元へメッセージを通知
 - エラー通知のための「エラー」メッセージ
 - 診断・調査などのための「問い合わせ」メッセージ

ICMPメッセージ

- 到達不能(タイプ3)
 - 送信ホストへ配信できなかったことを通知
 - 「コード」を使って原因を通知
 - コードO: Network Unreachable
 - ¬►1: Host Unreachable
 - コード4: Fragmentation Need and Don't Fragment was set (経路MTU検索)
- リダイレクト(タイプ5)
 - 最適な経路情報を通知 (redirect: 向きを直す)
 - 新しい経路情報(ルータが持つ)を通知
 - ルータの経路情報がおかしいとトラブルに...
 - コードで変更する経路を指定

ICMPメッセージ (コマンドの紹介)

- **エコー** (タイプ0、8)
 - パケットが相手に到達するかを調査
 - エコー要求(タイプ8)を送信 エコー(タイプO)を返信
- 時間超過 (タイプ11)
 - パケットが永久に回るのを防ぐ
 - 生存時間(TTL: Time To Live)
 - ルータを通過すると「1」減る
- コマンドの紹介
 - ping (相手を通信できるかを調査)
 - traceroute (**通過するルータを調査**)
 - Windowsでは tracert
 - pathping (Windows XP/2000限定)

IPマルチキャスト

ストリーミング (ラジオ、ビデオ等) で利用

- 同時通信で効率をアップ
 - 特定のグループだけデータを送信ユニキャスト・ブロードキャストとの違い
 - ルータでパケットを複製 ネットワークのトラフィックを抑制
- マルチキャストアドレス
 - 同一セグメント: 224.0.0.0~224.0.0.255
 - 全セグメント:残りのマルチキャストアドレス
 - 用途が決められたものもある (149ページ 表4.4)
- IGMP: Internet Group Management Protocol
 - 所属するグループを特定するプロトコル

IPヘッダ

- バージョン (Version)
 - IPヘッダのバージョン (4bit)
- パケット長 (Total Length)
 - パケットの最大サイズ (16bit: 2¹⁶=65536)
- フラグ (Flags)
 - パケットの分割制御(3bit)
- 生存時間 (TTL: Time To Live)
 - 中継できるルータの個数 (8bit: 2⁸=256個)
- プロトコル (Protocol)
 - 上位層のプロトコル (8bit)
- 送信元IPアドレス (Source Address)
- 宛先IPアドレス (Destination Address)
 - 32ビット(8オクテット)

今回のまとめ

- 経路制御
 - 経路制御表によって配信先を決定
 - 配信先は指定できる(ダイナミック、スタティック、デフォルト)
- IPパケットの分割と再構成
 - MTUの違いをなくして通信効率を上げる
- ARP
 - MACアドレスからIPアドレスを調べる
 - データリンク上の通信に必要
- ICMP
 - エラーの通知やネットワークの診断をする
 - コマンドからも利用できる(ping, traceroute)
- IPマルチキャスト
 - _ 1対多数の同時通信を効率よ〈

次回の予定

- 次回は12月14日
- ■内容
 - 一 中間試験
 - 第5章 DHCP、NATの後半
- ■連絡事項
 - 第5章 5.2(p.160)まで、通読すること